
Allora: a Self-Improving, Decentralized Machine Intelligence Network

J. M. Diederik Kruijssen,1 Nicholas Emmons,1 Kenneth Peluso,1 Faisal Ghaffar,1 Alexander Huang1 & Tyler Kell1
1Allora Foundation

Litepaper v2024.3.20

Abstract

Recent advances in data access and computing power have enabled the first forms of machine intelligence capable of
offering meaningful insights. However, the tremendous resources required have caused these solutions to be closed and
siloed by industry monoliths. To achieve the full potential of machine intelligence, the data, algorithms, and participants
must be maximally connected. Network solutions are needed, and the decentralized nature of blockchain technology
is ideal for solving this problem. We introduce Allora, a self-improving, decentralized machine intelligence network
that surpasses the capabilities of its individual participants by design. Allora achieves this through two main innovations.
First, it lets network participants forecast each other’s performance under the current conditions, thereby creating a form of
context-awareness that enables the network to achieve the best inferences under any circumstances. Second, it introduces
a differentiated incentive structure that rewards network participants for their unique contribution to the network goal,
tailored to their specific task and purpose, avoiding any distracting incentives. We show that these innovations make
Allora’s inferences considerably more accurate than before. With its versatility and accessibility, Allora paves the way
for machine intelligence to become fully commoditized and integrated with the economy, technology, and society.

1 The Problem: Siloed Machine Intelligence
Machine intelligence represents the ability of a machine to learn, improve, and work proactively through artificial intelli-
gence (AI) and machine learning (ML). It is built by conditioning advanced algorithms on large volumes of informative
data using state-of-the-art computational infrastructure. We live in the information age, where major advances in data gen-
eration, processing, and availability are combined with revolutionary computational capacity. These developments have
unlocked major advances in machine intelligence, capable of providing insights beyond the reach of human inference,
across a wide variety of use cases (e.g. Jacobs et al., 1991; Shazeer et al., 2017; Lightman et al., 2023; OpenAI, 2023).
As such, machine-generated intelligence is becoming a valuable resource and a popular commodity.

The coordination of resources needed to build machine intelligence, coupling data, algorithms, and computational
power, has naturally favored industry monoliths. These now hold the keys to the best performing forms of automated
inference ever created. This not only monopolizes the ability to control, direct, and use this revolutionary technology,
but also creates a lack of transparency and a major barrier to entry for developers and users. Fundamentally, this siloed
approach also violates a key prerequisite for building the best possible form of machine intelligence: to maximize the
number of connections across a network in which diverse data sets and algorithms can be freely coupled, so that the most
relevant insights can be obtained (e.g. Vaswani et al., 2017; Bzdok et al., 2019).

The problem at hand naturally requires network solutions that create a form of swarm intelligence, connecting a
large number of data sets and inference algorithms (e.g. McMahan et al., 2017). The decentralized nature of blockchain
technology lends itself ideally to solving this problem, allowing bespoke incentive structures that align the interests of
network participants with those of the network, and facilitating the exchange of value needed to directly support an
intelligence economy (e.g. Nakamoto, 2008; Buterin, 2014).

Existing blockchain initiatives that attempt to solve the machine intelligence problem are sub-optimal. Some well-
known solutions adopt such a strictly decentralized philosophy that they are unable to support different incentive structures
for different actors within the network (e.g. Craib et al., 2017; Rao et al., 2021; Steeves et al., 2022). Additionally, these
solutions often reward network participants using traditional blockchain objectives such as their integrated historical
reputation, making them struggle to achieve context-aware intelligence that provides the best solution in the specific
context where an inference is needed.

Allora is a self-improving, decentralized machine intelligence network that overcomes these fundamental challenges.
Allora is built on the desire to create a world where machine intelligence supports and improves humanity by offering
unique and actionable insights that outperform all other forms of inference. In this world, machine intelligence is openly
accessible and transparent, inviting contributions from anyone with data or algorithms that improve the network.

Allora acknowledges that different roles within the network require different incentive structures, and that selecting the
best inference across a network of participants often depends on contextual details that themselves may require machine
intelligence to be identified. As was recognized by Buterin (2024), “there is a need for a higher-level game which
adjudicates how well the different AIs are doing, where AIs can participate as players in the game.” By recognizing
these fundamental aspects of machine intelligence and adopting innovative solutions to address them, the Allora network

1

returns inferences that outperform the strongest network participant by definition, yet rewards each of them fairly for
their contribution towards achieving this goal. This solves a fundamental challenge in decentralized learning and machine
intelligence.

While the involvement of industry monoliths in the quest for machine intelligence has made it seem like a winner-
takes-all race, the arrival of Allora now introduces a fully decentralized solution that outperforms any individual contrib-
utor. In this way, the end user is the winner, and machine intelligence belongs to everyone.

2 Allora: Self-Improving, Decentralized Machine Intelligence
The Allora network is a state-of-the-art protocol that uses decentralized AI and ML to build, extract, and deploy AI pre-
dictions or inferences among its participants. It offers a formalized way to obtain the output of ML models in blockchain
networks of virtual machines (VMs) and to reward the operators of AI nodes who create these inferences. In this way,
Allora bridges the information gap between data owners, data processors, AI models, and the end users or consumers who
have the means to execute on these insights.

The AI agents within the Allora network use data and algorithms to generate inferences, which they then broadcast
across a peer-to-peer network. A second set of agents evaluates the quality of these inferences using a network consensus
mechanism. The network then uses these assessments to generate a single collective inference. Over time, this network
inference outperforms any individual AI agent by construction, thanks to the unique innovations of the Allora design.
The network distributes rewards to the agents according to their individual contributions to the network inference. This
carefully designed incentive mechanism enables Allora to continually learn and improve, adapting to each inference
problem as it evolves.

Allora introduces a variety of innovations that represent important steps towards our goal of achieving self-improving,
decentralized machine intelligence. The network has been designed following a modular philosophy that recognizes the
need for bespoke solutions that best satisfy local boundary conditions. The main defining characteristics are Allora’s
context awareness and its differentiated incentive structure. After first providing a brief overview of the network
structure, we expand on these key concepts further below.

The Allora ecosystem is built on a hub chain that coordinates the macroeconomics of the network, including the
tokenomics of the network’s native ALLO token and the emission of subsidies and rewards, as well as other coordination
tasks. To help organize the problems that the Allora network can solve, we introduce the concept of topics. These are
sub-networks within which network participants collaborate to generate inferences and earn rewards. Each topic contains
a short rule set that governs the interaction between the topic participants, including the target variable and the loss
function that needs to be optimized by the topic network. The discussion of this paper focuses mainly on the topic
infrastructure, which is illustrated schematically in Figure 1.

After any of the Allora network participants create a topic, the participants can perform a variety of different roles.

1. Workers provide AI-powered inferences to the network. There exist two kinds of inference that workers produce
within a topic. The first refers to the target variable that the network topic is generating (inference in Figure 1).
The second refers to the forecasted losses of the inferences produced by other workers (forecasting in Figure 1).
These forecasted losses represent an expectation of performance rather than a reported performance, and represent
the fundamental ingredient that makes the network context-aware, as they provide insight into the accuracy of a
worker under the current conditions. For each worker, the network uses these worker-forecasted losses to generate
a forecast-implied inference that combines the original inferences of all workers. A worker can choose to pro-
vide either or both types of inference, and receives rewards proportional to its unique contribution to the network
accuracy, both in terms of its own inference and its forecast-implied inference.

2. Reputers evaluate the quality of the inferences and forecast-implied inferences provided by the workers. This is
done by comparing the inferences with the ground truth when it becomes available. Reputers are the source of
economic security in the network, as a reputer receives rewards proportional both to its stake and the consensus
between its evaluations and those of other reputers.

3. Consumers request inferences from the network. A consumer uses tokens to pay for these inferences.

The interactions between these participants are coordinated by the Allora topic rule set (referred to as topic coordinator
in Figure 1). Together, they represent the ingredients needed to achieve a self-improving, decentralized form of machine
intelligence.

3 Allora’s Context-Aware and Self-Improving Intelligence Mechanism
The first of two critical hurdles to achieving decentralized machine intelligence is to optimally combine the inferences
produced by network participants. This means that the network must recognize both the historical and context-dependent
accuracy of these inferences. Especially the latter of these requirements has posed a challenge: most initiatives attempting

2

Reputers

Topic Coordinator

Workers: forecasting

Workers: inference

Consumers

Request inferences
and bid fees

Communicate
requests

Provide inferences

Provide forecasted
losses of inferences

Use ground truth
to score previous inferences

and forecast-implied inferences

Use scores
to combine inferences

and provide these
to consumer

Reward based on
unique contribution

to accuracy of
network inference

Reward based on unique contribution
to accuracy of network inference

Reward based on stake
and scoring consensus

Logical connection

Economic connectionReward
 emissions

Fee

Provide forecast-implied inferences

Allora

Figure 1: Schematic representation of an Allora ‘topic’, which is a sub-network within the Allora ecosystem charac-
terized by a specific AI target and loss function. Topics help organize the problems that Allora is solving, and they are
used to coordinate the collaboration between network participants. This schematic illustrates the logical and economic
interactions between workers, reputers, and consumers. The ‘topic coordinator’ represents the rule set that Allora uses
to coordinate these interactions.

to build machine intelligence exclusively rely on cumulative historical reputation to combine inferences while ignoring de-
terministic variations in their accuracy, which prohibits the network to be context-aware. Allora overcomes this challenge
through a process called Inference Synthesis, which we describe in this section.

In describing the functionality of Allora’s intelligence mechanism, we assume that there exists an online data stream
that is used to obtain periodic inferences for a total number of time steps or epochs Ne, where i ∈ {1, . . . , Ne} indicates
the epoch. Furthermore, we consider a system consisting of Nw workers that provide Ni inferences during the inference
task and Nf inferences during the forecasting task. For simplicity, we assume full participation (Nw = Ni = Nf), but
this need not be the case. During the inference task, each worker j ∈ {1, . . . , Ni} produces an inference Iij for the target
variable of the topic, using its own data set Dij and model Mij :

Iij = Mij(Dij). (1)

During the forecasting task, each worker k ∈ {1, . . . , Nf} produces an inference for the forecasted loss Lijk of the
inference Iij produced by worker j, using its own (potentially augmented) data set Dijk and model Mijk:

Lijk = Mijk(Dijk), (2)

where Mijk should be defined such that Lijk > 0 (e.g. by using powers of 10 if needed).

3

Notation. We employ a subscript notation to indicate the association of variables with different components of
the network. The notation is based on a combination of indices (i, j, k, l, m), each denoting a specific element
or task within the network. The last index in the sequence denotes the network element or task with which the
variable is associated. Specifically, when the last index is:

i: The variable is associated with the network itself (‘topic coordinator’ in Figure 1).
j: The variable is associated with a worker carrying out an inference task, in which it infers the topic’s target

variable (‘worker: inference’ in Figure 1).
k: The variable is associated with a worker carrying out a forecasting task, in which it forecasts the loss of

another worker’s inference (‘worker: forecasting’ in Figure 1).
l: The variable is associated with a worker carrying out either the inference or the forecasting task, and has

been obtained by appending the arrays associated with each of these individual tasks.
m: The variable is associated with a reputer, which calculates and reports the loss of an inference of the topic’s

target variable (‘reputer’ in Figure 1).
Note that any of these indices can be operated on (e.g. subtraction to refer to earlier time steps), and thus we
equate e.g. Xi,j ≡ Xij occasionally to improve legibility. Our notation formalism also implies that e.g. Xi, Xij ,
Xik, and Xijk are all different variables. Finally, we use caligraphic script to refer to variables that represent a
ground truth, such as a loss or a regret.

The losses forecasted by workers during the forecasting tasks reflect how accurate worker k expects the inference Iij
to be, given the contextual information Dijk. This correlation between performance and context is the critical ingredient
that makes Allora context-aware. The forecasted losses are used to obtain the forecast-implied inference of the topic’s
target variable through a weighted average:

Iik =

∑
j wijkIij∑
j wijk

. (3)

To calculate the weights wijk, we first approximate the forecasted regret Rijk of the network-wide inference Ii to be
constructed at the current epoch by subtracting the logarithms of the forecasted losses Lijk from the network loss Li−1

that was reported at the previous time step, which results in:

Rijk = log

(
Li−1

Lijk

)
. (4)

A positive regret implies that the inference of worker j is expected by worker k to outperform the network’s previously
reported accuracy, whereas a negative regret indicates that the network is expected to be more accurate. The regrets
are converted to weights following a gradient descent approach, where the weights are set by the gradient of a potential
function ϕp(x):

wijk = ϕ′
p(R̂ijk), (5)

where we define a simple potential function
ϕp(x) = ln (1 + ex)

p
, (6)

where we adopt p = 2 as a fiducial value. This potential function is a smoothly differentiable approximation of
max (0, x)

p, reflecting the intention that the workers providing inferences that are expected to have negative regrets
should be assigned negligible weights. The resulting gradient is

ϕ′
p(x) =

p ln (1 + ex)
p−1

ex

1 + ex
. (7)

Before the forecasted regret is passed to the potential function, it is normalized as

R̂ijk =
Rijk

|maxj (Rijk)|
, (8)

where maxj indicates taking the maximum over all j ∈ {1, . . . , Ni}. Normalization by the absolute value of the maximum
forecasted regret restricts R̂ijk to the range (−∞,±1], with the sign of the upper bound depending on whether the
maximum regret is positive or negative. This normalization ensures that the network always obtains a non-zero weight
for at least one inference, which when all forecasted regrets are negative may not happen otherwise, while maintaining
the intended distribution of similarly-low weights for all-negative forecasted regrets and steeply increasing weights for
positive regrets. Using these definitions, the network has access to a total of Ni +Nf ≤ 2Nw inferences, with Iij being
the original set of inferences from the inference task, and Iik being the set of context-aware forecast-implied inferences
from the forecasting task.1

1Recall that a worker may choose to engage (or not) in any of the tasks, so 2Nw inferences represents an upper limit to the total number. For
simplicity, we assume here that all workers perform all tasks, but the design outlined in this paper does not require this assumption to be satisfied.

4

The network concludes the Inference Synthesis and obtains a network-wide inference by combining the inferences
Iij and the forecast-implied inferences Iik through a procedure similar to the one described above. We first define a new
variable Iil that appends both sets of inferences in a new array with l ∈ {1, . . . , Ni +Nf}. The network inference is then
defined as

Ii =

∑
l wilIil∑
l wil

. (9)

This time, the weights are not set by a forecasted regret, but by the actual regret for each worker task obtained during the
previous time step Ri−1,l (which we will define in Equation 15), as

wil = ϕ′
p(R̂i−1,l), (10)

with
R̂i−1,l =

Ri−1,l

|maxl (Ri−1,l)|
, (11)

analogously to Equation 8.
In addition to the network inference Ii of Equation 9, the network generates a wide variety of secondary inferences

that are based on various subsets of the inferences obtained during the inference and forecasting tasks. These secondary
inferences are used to derive the confidence intervals of the network inference, and to quantify the unique contribution of
workers through their inference and forecasting tasks to improving the accuracy of the network inference, which is used
to determine their reward allocations (see §4). These secondary inferences include:

1. A ‘naive’ network inference I−i , which omits all forecast-implied inferences from the weighted average in Equa-
tion 9 by setting their weights to zero. The naive network inference is used to quantify the contribution of the
forecasting task to the network accuracy, which in turn sets the reward distribution between the inference and
forecasting tasks.

2. A ‘one-out’ network inference I−li , which omits a single inference or forecast-implied inference l from the weighted
average in Equation 9. If an inference from the inference task is omitted (Iij), the forecast-implied inferences (Iik)
are updated accordingly before calculating I−li . The one-out network inferences represent an approximation of
Shapley (1953) values and are used to quantify the individual contributions of workers to the network accuracy,
which in turn sets the reward distribution between workers. The one-out network inferences are also used to calcu-
late confidence intervals on the network inference Ii.

3. A ‘one-in’ naive network inference I+ki, which adds only a single forecast-implied inference Iik to the inferences
from the inference task Iij . As such, it is used to quantify how the naive network inference I−i changes with the ad-
dition of a single forecast-implied inference, which in turn is used for setting the reward distribution between work-
ers for their forecasting tasks. The one-in naive network inference better differentiates between forecast-implied
inferences than their associated one-out inferences, because there exists some redundancy between multiple fore-
casting tasks and omitting a single one need not negatively impact the network inference. After all, the forecasting
tasks can only draw from a finite number of original inferences and forecast-implied inferences may sometimes be
mutually exchangable. This redundancy is desirable from a decentralization perspective and should not be disincen-
tivized by exclusively using the one-out network inference to reward workers for the forecasting task. Therefore,
we additionally use the one-in naive network inference to quantify each worker’s individual contribution.

All inferences generated by the network are collected as

Ii = {Ii, Iij , Iik, I−i , I−li , I
+
ki}, (12)

and are evaluated by the reputers. The reputers obtain a ground truth of the target variable Y when it becomes available
(for simplicity, we assume this is delayed by one time step) and compare it with each of the inferences by calculating the
topic’s loss function Q.

Lim = Q(Ii−1,Yi−1), (13)
Lijm = Q(Ii−1,j ,Yi−1),

Likm = Q(Ii−1,k,Yi−1),

L−
im = Q(I−i−1,Yi−1),

L−
lim = Q(I−l,i−1,Yi−1),

L+
kim = Q(I+k,i−1,Yi−1).

It is left to the individual reputer to decide whether the loss reported at time step i also includes some record of the
historical loss, e.g. by using an exponential moving average. Doing so introduces a free parameter αm that controls the
relative weights of the historical and current losses. Because reputers are rewarded based on their consensus (see §4), this

5

20
21

-01

20
21

-04

20
21

-07

20
21

-10

20
22

-01

20
22

-04

20
22

-07

20
22

-10

20
23

-01

20
23

-04

20
23

-07

20
23

-10

Time

10 4

10 3

10 2

10 1
Lo

ss
es

Inferences
Forecast-implied inferences

Naive network loss
Full network loss

Figure 2: Demonstration of Allora’s self-improving intelligence and the accuracy improvement due to its context-aware
Inference Synthesis mechanism. The dotted black line shows the naive network loss as a function of time, which is obtained
by combining individual inferences (blue) without context awareness. The solid black line shows an order of magnitude
improvement in loss thanks to the introduction of the forecasting task (cyan), which correlates performance and context
by letting workers forecast each other’s losses under the current conditions.

introduces a game-theoretical aspect to the reputer task. It is expected that reputers achieve consensus on the choice of
αm that optimizes the accuracy of the network inference.

Each reputer has a stake Sim, and the losses reported by the reputers are combined through a stake-weighted average
of the log-loss:

logLi =

∑
m Sim logLim∑

m Sim
, (14)

where we have avoided specifying all six variations listed in Equation 13 for brevity. The resulting losses are used by the
network to calculate the corresponding regrets, which set the weights of the network inference as specified in Equation 9–
Equation 11. The regrets are calculated according to an exponential moving average with a fiducial parameter α ∈ (0, 1]:

Ril = α log

(
Li

Lil

)
+ (1− α)Ri−1,l. (15)

We adopt α = 0.1 as the fiducial value, which provides a reasonable balance between historical performance and recency.
Corresponding regrets are also calculated for the losses of the secondary inferences listed in Equation 13, to enable
evaluating Equation 10 for each of these.

Figure 2 illustrates the performance of the Allora architecture. We consider a simple numerical experiment using mock
data, where three workers generate inferences that predict the ground truth with some specified accuracy. At each time
step, the error of a different worker is temporarily decreased by a factor 0.3 to mimic context-dependent outperformance.
The workers also forecast each other’s losses with different degrees of context-sensitivity, i.e. their ability to anticipate
this temporary outperformance. Figure 2 shows the losses of the resulting forecast-implied inferences, together with the
losses of the original inferences, the loss of the naive network inference, and the loss of the complete network inference.
On average, the naive network is as good as or better than the best inference. However, the forecast-implied inferences
are even more accurate, and the network-wide inference outperforms all other inferences on average. We find that the
addition of the forecasting task greatly improves the network accuracy, even in cases where the accuracy of the workers
performing the forecasting task is lower than during the inference task. Even a moderate contextual awareness of when
inferences are typically more accurate seems to be sufficient to yield a net improvement of the network accuracy.

With the presented design, Allora optimally combines the inferences produced by the network participants through its
Inference Synthesis mechanism. This is achieved by recognizing both the historical and context-dependent accuracy of
the inferences. The key ingredient is the introduction of the forecasting task, which correlates performance and context
by letting workers forecast each other’s losses under current conditions.

6

4 Allora’s Differentiated Incentive Structure

4.1 Reward distribution among individual network participants
The second critical hurdle to achieving decentralized machine intelligence is creating custom incentive structures that
appropriately reward different actions within the network. Workers should be rewarded for their inference and forecasting
tasks according to their unique contribution to the network. Fundamentally, there is no reason why this reward should
depend on a monetary commitment such as a stake; in fact, stake-dependent rewards distract from their single objective
of maximizing the network accuracy. By contrast, reputers must reach a form of consensus on their reported losses and
should be rewarded for their proximity to that consensus. Because the network should reward consensus among reputers,
their rewards can follow the common practice in decentralized systems of depending on the stake. By reporting on
the performance of workers and thereby influencing their reward allocation too, reputers’ stakes provides the economic
security for the entire topic.

Common ways to quantify the unique contribution of participants to an end result include the Shapley (1953) value,
Fisher (1922) information score, Banzhaf (1965) Power Index, and many others. The computational cost of these metrics
is often high due to their reliance on large permutation sets, which can be prohibitive in a decentralized network setting.
Therefore, Allora adopts a simple approximation of the Shapley values to score worker performance. For the inference
task, we define the performance score as the log-loss difference between the one-out inference and the network inference,
where the inference provided by a worker during the inference task is omitted from the network inference:

Tij = logL−
ji − logLi, (16)

where j in the subscript indicates that we only consider one-out losses of inferences from the inference task. Recall
that these one-out losses include the secondary impact of omitting an inference on the forecast-implied inferences by
recalculating these (see §3). The performance score Tij is positive if the removal of an inference would increase the
network loss, and is negative if its removal would decrease the network loss.

The worker performance during the forecasting task can be scored similarly, but requires additional information from
the one-in inferences introduced above. The forecasting task is comparatively redundant, i.e. in order to function well,
a topic requires only one worker with reasonable context awareness to provide forecasted losses. As a result, removing
any individual worker from the forecasting task may not noticeably impact the network inference loss, but the redundancy
between workers is desirable (and should be rewarded) from a network perspective. A complete Shapley value calculation
would remedy this problem by considering all possible permutations of workers, but at a prohibitive computational cost.
Allora sidesteps this issue by adding only a single, information-rich permutation per worker, where the forecast-implied
inference of that worker is added to the naive network inference to quantify its individual impact. The worker performance
score then becomes a combination of the one-out score and the one-in score:

Tik = (1− f+)T−
ik + f+T+

ik , (17)

where we define the one-out score analogously to Equation 16:

T−
ik = logL−

ki − logLi, (18)

and the one-in score as:
T+
ik = logL−

i − logL+
ki. (19)

It is easy to verify that these definitions satisfy the required directionality of the scores, i.e. the one-out score increases if
the removal of a forecast-implied inference would increase the network inference loss Li, and the one-in score increases
if the addition of a forecast-implied inference would decrease the naive network inference loss L−

i . The weight of both
terms in Equation 17 is parameterized using f+, which represents the fraction of permutations in a binomial experiment
in which a worker appears solo, i.e.

f+ =
1

2Nf
, (20)

where Nf is the number of workers providing forecasted losses during the forecasting task.
The scores obtained in Equation 16 and Equation 17 facilitate the distribution of rewards to workers for inference and

forecasting tasks. Given some total reward allocated to each of these tasks per time step (Ui and Vi, both specified in
detail below), we use the scores to calculate the rewards received by each individual worker. For the inference task, these
are defined as

Uij = Ui
M(Tij)∑
j M(Tij)

, (21)

and for the forecasting task, these are

Vik = Vi
M(Tik)∑
k M(Tik)

. (22)

7

Here, M is a mapping function that maps scores to reward fractions and the division by the sum ensures normalization of
the reward fractions to unity. The mapping function must satisfy a number of simple requirements. It must reward positive
scores and attribute negligible reward to negative scores. It must also be agnostic to the absolute scale of the scores, so that
the inference and forecasting tasks are compensated according to a similar differentiation between contributions. Finally,
it must accept a free parameter that can be used to control the spread in reward fractions, because this allows the network
to influence the (de)centralization of the rewards if needed. The simplest functional form that satisfies these requirements
is

M(T) = ϕp

[
T

σ(T)

]
, (23)

where σ(T) represents the standard deviation of all scores over the ∆N most recent time steps. The use of the potential
function ϕp (see Equation 6) ensures that only positive scores receive significant rewards, while negative scores receive a
small reward to acknowledge the contribution to decentralization. Dividing by the standard deviation of the scores ensures
a similar differentiation between contributions, irrespective of the absolute scale of the score. The parameter p associated
with the potential function controls the spread of the rewards. As a fiducial value we adopt p = 1.5 for the inference and
forecasting tasks, and ∆N = 10 for the time window over which the standard deviation σ(T) is evaluated.

As discussed above, reputers require scoring according to their consensus in reporting the ground truth. The naive
way of doing this is to calculate the stake-weighted average of all losses reported by a reputer, and to add the rewards to
their stakes. However, this creates a runaway effect towards increased centralization, where the reputer with the highest
stake has the largest weight in setting the consensus, thereby receiving the highest rewards and further increasing their
stake advantage. This can be remedied by using an adjusted stake to set the weight of each reputer when calculating the
consensus, where the weight saturates above a certain fraction of the stake. Specifically, Allora assigns an adjusted stake
for calculating the consensus as

Ŝim = 1− ϕ−1
1 (η)ϕ1

[
−η

(
NraimSim∑
m aimSim

− 1

)]
, (24)

where Nr is the number of reputers, ϕ1 refers to the potential function from Equation 6 with p = 1, and aim is a
listening coefficient defined below, which falls in the range [0, 1] and represents a weight that the network associates with
each individual reputer depending on its historical performance. This function approximates unity for above-average stake
fractions (aimSim/

∑
m aimSim > 1/Nr), because the negative argument of the second ϕ1 term drives it to zero, whereas

for below-average stake fractions (Sim/
∑

m Sim < 1/Nr) it increases linearly from zero at Sim = 0 to approximately
unity at aimSim/

∑
m aimSim = 1/Nr. The steepness of the transition is controlled by the parameter η, for which we

adopt a fiducial value of η = 20. This formulation ensures that the consensus calculation is not susceptible to a majority
attack, as reputers with above-average stake have equal weight in setting the consensus. The magnitude of their stake
influences the rewards received, but cannot be used to further increase their influence in defining the reference point for
the reward distribution. This avoids the runaway effect leading to ever-increasing centralization.

With this adjusted definition, we collect all losses reported by a reputer as

Lim = {Lim,Lijm,Likm,L−
im,L−

lim,L+
kim}, (25)

and define the consensus loss vector as

logLi =

∑
m Ŝim logLim∑

m Ŝim

. (26)

The reward received by each reputer is set by a combination of its stake and the Euclidean proximity of its reported losses
to the consensus loss vector. We score the proximity to consensus as

Tim =

[
∥log(Lim/Li)∥

∥logLi∥
+ ϵ

]−1

, (27)

where the first term expresses the relative proximity and ϵ = 0.01 is a small tolerance quantity used to cap reputer scores at
infinitesimally close proximities. With these definitions, we can now calculate the listening parameters, which we obtain
by gradient descent. As the objective function, we use the stake-weighted total consensus score:

Ti =

∑
m SimTim∑

m Sim
. (28)

The listening coefficients are initialized at unity and are updated following an iterative process:

aim = aim + λ
d lnTi

daim
, (29)

where λ is the learning rate and d lnTi/daim is the relative gradient. The iterative update of Equation 29 is carried
out each epoch until the relative gradient reaches d lnTi/daim < 0.001, or until the maximum of 1/λ iterations is

8

reached. Whenever the update of the listening coefficients of Equation 29 decreases the fraction of stake that is listened
to below

∑
m aimSim/

∑
m Sim < 0.5, the differential is instead interpolated to ensure

∑
m aimSim/

∑
m Sim = 0.5.

The resulting listening coefficients carry over into the next epoch, where they are updated using the same process. This
gradient descent mechanism enforces consensus and ensures that the network is robust against minority attacks, where
reputers incorrectly report on the losses of favored workers. The network learns the listening coefficients aim to ensure
that such dishonest reputers are quickly silenced.

Given a total reward allocated to reputers per time step (Wi, specified in detail below), we now calculate the reward
per reputer as

Wim = Wi
(SimTim)

p∑
m (SimTim)

p , (30)

where the multiplication by stake and consensus score ensures the appropriate dependence of the reward on both quantities,
and the parameter p grants the ability to modify the reward spread (we adopt a fiducial value of p = 1). Each reputer’s
reward is added to their stake, so that the stake is constituted by a combination of monetary commitment and historical
performance:

Si+1,m = Sim +Wim. (31)

This way, poorly performing reputers experience dilution of their stake and weight, whereas accurate reputers can grow
their influence. Another major advantage of this form of reward payments to reputers is that the topic is secured by capital
in rough proportion to its value.

4.2 Reward division between network tasks
The system described above governs the distribution of rewards among individual participants performing the same task.
Next, we define how the total rewards emitted in a given time step Ei are divided among the three classes of tasks within
the topic. The differentiation in incentive structures between the classes requires the definition of a new objective function
that is relevant in each of the three cases. The common objective of the network is to incentivize decentralization, and
this can be quantified for each class of tasks by considering the entropy of the reward distribution among participants
performing that task. The entropy increases for larger numbers of participants and for more equal reward distributions.

We define a modified entropy for each class ({Fi, Gi, Hi} for the inference, forecasting, and reputer tasks, respec-
tively) to quantify its degree of decentralization:

Fi = −
∑
j

fij ln (fij)

(
Ni,eff

Ni

)β

,

Gi = −
∑
k

fik ln (fik)

(
Nf,eff

Nf

)β

, (32)

Hi = −
∑
m

fim ln (fim)

(
Nr,eff

Nr

)β

,

where we have defined modified reward fractions per class as

fij =
Ũij∑
j Ũij

, fik =
Ṽik∑
k Ṽik

, fim =
W̃im∑
m W̃im

. (33)

Here, the tilde over the rewards indicates that we have applied an exponential moving average

Ũij = αUij + (1− α)Ui−1,j , (34)

Ṽik = αVik + (1− α)Vi−1,k, (35)

W̃im = αWim + (1− α)Wi−1,m, (36)

to enable the entropy to include some record of the recent historical degree of decentralization rather than just the last
time step. As before, we adopt a fiducial value of α = 0.1.

Finally, the entropy requires modification by the number ratio term in Equation 32, because the increase of the actual
entropy with lnN might otherwise incentivize a sybil attack, in which any class of topic participants to add many copies
of themselves to the network in an attempt to boost their entropy and class reward allocation. The number ratio term in
Equation 32 has been added to prevent this. It contains an effective number of participants, which is defined as

Ni,eff =
1∑
j f

2
ij

, Nf,eff =
1∑
k f

2
ik

, Nr,eff =
1∑

m f2
im

. (37)

For an equal reward distribution, Neff = N by definition. For strongly unequal reward distributions, Neff ≪ N . With
the addition of the (Neff/N)β term in Equation 32, any sybil attack would necessarily dilute the individual rewards of the

9

103

104

Ti
m

e
st

ep
 re

wa
rd

s [
AL

LO
] Total rewards

103

104

Inference task rewards

103

104

Forecasting task rewards

103

104

Reputer rewards

20
21

-01

20
21

-04

20
21

-07

20
21

-10

20
22

-01

20
22

-04

20
22

-07

20
22

-10

20
23

-01

20
23

-04

20
23

-07

20
23

-10

Time

103

104

105

106

107

Cu
m

ul
at

iv
e

re
wa

rd
s [

AL
LO

]

Total
Inference task
Forecasting task
Reputer task

20
21

-01

20
21

-04

20
21

-07

20
21

-10

20
22

-01

20
22

-04

20
22

-07

20
22

-10

20
23

-01

20
23

-04

20
23

-07

20
23

-10

Time

103

104

105

106

107

All workers
Worker 1
Worker 2
Worker 3

20
21

-01

20
21

-04

20
21

-07

20
21

-10

20
22

-01

20
22

-04

20
22

-07

20
22

-10

20
23

-01

20
23

-04

20
23

-07

20
23

-10

Time

103

104

105

106

107

All workers
Worker 1
Worker 2
Worker 3

20
21

-01

20
21

-04

20
21

-07

20
21

-10

20
22

-01

20
22

-04

20
22

-07

20
22

-10

20
23

-01

20
23

-04

20
23

-07

20
23

-10

Time

103

104

105

106

107

All reputers
Reputer 1
Reputer 2
Reputer 3

Figure 3: Demonstration of the incentive structure of the Allora network, showing how rewards are distributed among
different network participants over time. The left-hand column shows the total rewards given to each of the network task
classes, i.e. the inference task (blue), the forecasting task (cyan), and the reputer task (red), as well as the combined total
in black. The top panel shows these rewards per time step and the bottom panel gives their cumulative sum over time. The
other columns show the same information broken down into rewards for individual participants engaged in the inference
(left-middle), forecasting (right-middle) and reputer (right) tasks.

sybil, which would increase the number of participants while keeping their effective number approximately constant. As
a result, the number ratio term (Neff/N)β would decrease and help maintain constant entropy. Tests of this formulation
show that β = 0.25 achieves this nearly exactly, and we adopt this as a fiducial value.

With the entropies in hand, we define the part of the total reward emitted per time step Ei that is allocated to each
class as

Ui =
(1− χ)γFiEi

Fi +Gi +Hi
, Vi =

χγGiEi

Fi +Gi +Hi
, Wi =

HiEi

Fi +Gi +Hi
. (38)

In other words, each class of activity within a topic is allocated a reward proportional to the fraction of the total modified
entropy (Fi + Gi +Hi) that is generated by that class. The rewards for the inference and forecasting tasks each contain
an additional factor ((1 − χ)γ and χγ, respectively). These factors are included, because the reward split between
the inference and forecasting tasks should additionally acknowledge the added value provided by the forecasting task.
Fundamentally, the inference task is the engine of the Allora network; without any inferences to start with, there would
be no network inference. By contrast, the network can function without the forecasting task, but is included to create
context awareness and increase the accuracy of the network inference. Therefore, it is reasonable to modulate the reward
allocation between both worker tasks according to the relative utility of the forecasting task.

The forecasting task utility χ is measured using a definition analogous to the one-out performance scores in Equa-
tion 16. We subtract the log-loss of the complete network inference (Li) from that of the naive network (L−

i), which is
obtained by omitting all forecast-implied inferences:

Ti = logL−
i − logLi. (39)

The performance score of the entire forecasting task Ti is positive if the removal of the forecasting task would increase
the network loss, and is negative if its removal would decrease the network loss. We then apply a sigmoid function to the
score and scale the result to let the forecasting task utility range from χ = (0.1, 0.5):

χ = 0.1 + 0.4σ(aTi − b), (40)

where σ represents the sigmoid function and we adopt a = 8 and b = 0.5 to generate a relatively smooth transition around
Ti ≈ 0.5, with χ ≈ 0.1 for Ti < 0 and χ ≈ 0.5 for Ti > 1. We can now multiply the allocation of class rewards for
the inference and forecasting tasks by (1− χ) and χ, respectively, and then renormalize with a factor γ to ensure that the
total reward allocated to workers (Ui + Vi) remains constant (otherwise, this would go at the expense of reputers). It is
straightforward to demonstrate that this normalization factor reads

γ =
Fi +Gi

(1− χ)Fi + χGi
. (41)

Substitution of Equation 41 into Equation 38 indeed results in Ui + Vi = Ei(Fi +Gi)/(Fi +Gi +Hi), as desired.
Figure 3 illustrates the resulting incentive structure of the Allora network, using the same numerical experiment as

considered in Figure 2. The best-performing participants (Worker 2 and Reputer 2) receive the largest share of the rewards

10

on average, allowing them to achieve the highest cumulative rewards at the end of the experiment. Toward the end of the
experiment, the spread in rewards is larger for the reputers than for either of the two worker tasks, indicating that their
adjusted entropy is lowest. As a result, reputers receive the smallest reward share. The fact that the inference task is
allocated higher cumulative rewards than the forecasting task is mainly due to the low initial utility of the forecasting
task, which is visible in Figure 2 as the steep decrease in the losses of the forecast-implied inferences during the first time
steps. The forecasting task needs some time before it outperforms the individual inferences, which means that initially the
inference task receives most of the worker reward share. This initial difference is partially overcome later on, due to the
small spread in rewards per time step of the forecasting task and its correspondingly high entropy, which leads to a high
reward allocation in comparison to the other tasks.

The above design represents a complete description of the differentiated incentive structure of a topic within the Allora
network. The described rule set appropriately rewards workers for high-quality inferences obtained from their inference
and forecasting tasks. It also rewards reputers according to their stake and consensus, allowing them to provide economic
security to the topic. Finally, it incentivizes and rewards a high degree of decentralization, where a topic hosts a large
number of participants that all make relevant contributions to network inferences and network security.

5 Conclusion
We have proposed Allora, a self-improving, decentralized machine intelligence network capable of translating a continu-
ous data stream into a series of network inferences that outperform any individual inference existing within the network.
Allora consists of worker nodes and reputer nodes, where the reputer nodes provide the economic security of the network
by staking in the network and reporting on the accuracy of the worker nodes in reference to the ground truth. The worker
nodes perform two different tasks. First, they provide inferences of the target variable under consideration (the ‘inference
task’). Second, they forecast the losses of the inferences of all worker nodes under the current conditions (the ‘fore-
casting task’). This key ingredient correlates performance and context, and thereby makes the network context-aware.
The network translates these forecasted losses into a single joint ‘forecast-implied inference’ per worker. The full set of
original inferences and the forecast-implied inferences are then combined into a network inference through Allora’s In-
ference Synthesis mechanism. We demonstrate that this network inference considerably outperforms the ‘naive’ network
inference, obtained by excluding the forecasting task.

In addition to these functional developments, Allora also features a differentiated incentive structure, allowing network
participants to be appropriately rewarded for specific behavior that aligns with the interests of the network. Workers are
rewarded for high-quality inferences obtained from their inference and forecasting tasks, without any form of dilution by
factors that might distract from their main purpose (cf. stake-weighted worker rewards). Reputers are rewarded according
to their stake and consensus, implying that they act as the economic and functional guardians of the network. Finally, the
network distributes rewards such that it maximizes the decentralization of the network, by rewarding groups of participants
with high entropy. This setup alleviates possible attack vectors and contributes to the security and longevity of the network.

With these innovations, Allora addresses two major challenges in decentralized AI. First, Allora recognizes that dif-
ferent roles within the network require different incentive structures. Second, Allora acknowledges that selecting the best
inference across a network of participants often depends on contextual details that themselves may require machine in-
telligence to be identified. By addressing these fundamental challenges in decentralized machine intelligence, the Allora
network returns inferences that outperform the strongest network participant by definition, yet rewards each of them fairly
for their contribution towards achieving this goal.

Allora’s applications are without bounds, and its accessibility and transparency make state-of-the-art machine intelli-
gence available to anyone. While the initial design focuses on supervised forms of AI, it will be natural to extend Allora’s
functionality to unsupervised AI and generative AI. With the versatility and accessibility of Allora, we foresee a future
where machine intelligence will eventually become fully commoditized and integrated with the economy, technology, and
society.

References
Banzhaf, J. 1965, Weighted voting doesn’t work: A mathematical analysis, Rutgers Law Review, 19, 317–343

Buterin, V. 2014, Ethereum: A next-generation smart contract and decentralized application platform,
https://github.com/ethereum/wiki/wiki/White-Paper, accessed: March 2024

Buterin, V. 2024, The promise and challenges of crypto + AI applications, https://vitalik.eth.limo/general/2024/01/30/cryptoai.html,
accessed: March 2024

Bzdok, D., Nichols, T. E., & Smith, S. 2019, Towards Algorithmic Analytics for Large-scale Datasets, Nature Machine Intelligence, 1,
296–306

Craib, R., Bradway, G., Dunn, X., & Krug, J. 2017, Numeraire: A Cryptographic Token for Coordinating Machine Intelligence and
Preventing Overfitting, https://numer.ai/whitepaper.pdf, accessed: March 2024

11

Fisher, R. A. 1922, On the Mathematical Foundations of Theoretical Statistics, Philosophical Transactions of the Royal Society of
London Series A, 222, 309–368

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. 1991, Adaptive mixtures of local experts, Neural computation, 3, 79–87

Lightman, H., Kosaraju, V., Burda, Y., et al. 2023, Let’s Verify Step by Step, CoRR, abs/2305.20050

McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. y. 2017, in Proceedings of Machine Learning Research, Vol. 54,
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, ed. A. Singh & J. Zhu (PMLR), 1273–1282

Nakamoto, S. 2008, Bitcoin: A Peer-to-Peer Electronic Cash System, https://bitcoin.org/bitcoin.pdf, accessed: March 2024

OpenAI. 2023, GPT-4 Technical Report, abs/2303.08774

Rao, Y., Steeves, J., Shaabana, A., Attevelt, D., & McAteer, M. 2021, BitTensor: A Peer-to-Peer Intelligence Market, abs/2003.03917

Shapley, L. S. 1953, A Value for n-Person Games, in Contributions to the Theory of Games II, ed. H. W. Kuhn & A. W. Tucker
(Princeton: Princeton University Press), 307—317

Shazeer, N., Mirhoseini, A., Maziarz, K., et al. 2017, Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer, CoRR, abs/1701.06538

Steeves, J., Shaabana, A., Hu, Y., et al. 2022, Incentivizing Intelligence: The Bittensor Approach, https://bittensor.com/academia,
accessed: March 2024

Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, Attention is all you need, in Advances in Neural Information Processing Systems,
5998–6008

12

	The Problem: Siloed Machine Intelligence
	Allora: Self-Improving, Decentralized Machine Intelligence
	Allora's Context-Aware and Self-Improving Intelligence Mechanism
	Allora's Differentiated Incentive Structure
	Reward distribution among individual network participants
	Reward division between network tasks

	Conclusion

